Refinement

Refinement on F^{2}
$R(F)=0.044$
$w R\left(F^{2}\right)=0.090$
$S=1.227$
5307 reflections
337 parameters
H -atom positions refined
with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{cq}}(\mathrm{C})$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0230 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.158 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.211 \mathrm{e} \AA^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 2. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (V)

$\mathrm{C} 6-\mathrm{C} 7$	$1.513(2)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.321(2)$
$\mathrm{C} 7-\mathrm{O} 18$	$1.455(2)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.470(2)$
$\mathrm{C} 7-\mathrm{C} 14$	$1.519(2)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.406(2)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.524(2)$	$\mathrm{C} 17-\mathrm{O} 18$	$1.383(2)$
$\mathrm{O} 18-\mathrm{C} 7-\mathrm{C} 6$	$106.3(1)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 7$	$120.4(1)$
$\mathrm{O} 18-\mathrm{C} 7-\mathrm{Cl} 4$	$109.4(1)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$120.0(1)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 14$	$115.5(1)$	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 15$	$116.7(1)$
$\mathrm{O} 18-\mathrm{C} 7-\mathrm{C} 8$	$112.8(1)$	$\mathrm{O} 18-\mathrm{C} 17-\mathrm{C} 16$	$120.6(1)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$101.7(1)$	$\mathrm{C} 17-\mathrm{O} 18-\mathrm{C} 7$	$116.6(1)$
$\mathrm{C} 14-\mathrm{C} 7-\mathrm{C} 8$	$111.1(1)$		
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{Cl} 4-\mathrm{Cl5}$	$-91.7(2)$	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 18-\mathrm{C} 7$	$29.6(2)$
$\mathrm{C} 7-\mathrm{C} 14-\mathrm{Cl} 5-\mathrm{C} 16$	$-3.3(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 18-\mathrm{C} 17$	$78.3(1)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 22$	$166.7(1)$	$\mathrm{O} 18-\mathrm{C} 17-\mathrm{C} 19-\mathrm{C} 20-178.6(2)$	

Table 3. Folding angles $\left(^{\circ}\right.$) of the pyran ring in compounds (I) to (V)

φ is the dihedral angle $(6,2,3) /(2,1,6)$ and θ is the dihedral angle $(6,2,3) /(3,4,6)$.

	(I)	(II)	(III)	(IV)	(V)
φ	$23.1(2)$	$22.9(2)$	$27.0(3)$	$20.7(2)$	$28.5(1)$
θ	$12.0(2)$	$10.0(2)$	$15.3(3)$	$7.4(2)$	$14.6(1)$

Table 4. Photochromic parameters and strain energies of the pyran ring in compounds (I) to (V)

	λ_{1} $(\mathrm{~nm})$	A_{1}	λ_{2} $(\mathrm{~nm})$	A_{2}	λ_{3} $(\mathrm{~nm})$	$A_{3}$$E_{5}$ $\left(\mathrm{kcal}_{\left.\mathrm{mol}^{-1}\right)}\right) \dagger$	
(I)	436	0.77					9.9
(II)	432	0.84					10.2
(III)	427	1.43	452	1.39	549	0.48	13.1
(V)	409	0.70	436	0.93	495	1.32	9.8
(V)	447	1.26	534	0.39			12.1

$\dagger 1 \mathrm{kcal} \mathrm{mol}^{-1}=4.184 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
For both compounds, program(s) used to solve structures: SHELXS86 (Sheldrick, 1985); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL93.

This work was supported by Russian Fund of Fundamental Investigations (grant N 96-03-32046).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1220). Services for accessing these data are described at the back of the journal.

References

Aldoshin, S. M., Chuev, I., Utenyshev, A. N., Filipenko, O. S., Lokshin, V., Pozzo, J. L. \& Guglielmetti, G. (1996). Acta Cryst. C52, 1834-1838.
Aldoshin, S. M., Chuev, I., Utenyshev, A. N.. Lokshin. V., Pozzo, J. L., Pèpe, G. \& Guglielmetti, G. (1995). Acta Cryst. C51, 141143.

Allinger, N. L. \& Young Y. (1977). Molecular Mechanics MM2 and MMP2 Programs. Program No. 395. Quantum Chemistry Program Exchange, University of Indiana, Bloomington, USA.
Miller, J. A., Levoir, P., Fontaine, J. C., Garnier, F. \& Dubois, J. F. (1975). Anal. Chem. 47, 29-32.

Johnson, C. K. (1976). ORTEPII. Report ORNL-3974. Oak Ridge National Laboratory, Tennessee, USA.
Pozzo, J.-L. (1994). Thesis, Université de la Méditerranée, Marseille, France.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen. Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.

Acta Cryst. (1998). C54, 1722-1724

A Water Adduct of Tris(pentafluorophenyl)borane: $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right){ }_{3} \mathrm{~B}\left(\mathrm{OH}_{2}\right)$-Dioxane$\mathbf{C H}_{2} \mathrm{Cl}_{\mathbf{2}}(\mathbf{1} / 1 / 1)$

Christoph Janiak, ${ }^{a *}$ Lothar Braun, ${ }^{b}$ Tobias G. Scharmann ${ }^{b}$ and Frank Girgsdies ${ }^{b}$
${ }^{a}$ Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany, and ${ }^{b}$ Institut für Anorganische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin,

Germany. E-mail: janiak@uni-freiburg.de
(Received 17 September 1997; accepted 20 May 1998)

Abstract

The dichloromethane solvate of the $1: 1$ aquatris(penta-fluorophenyl)borane-dioxane adduct, $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$-$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, is a water complex of tris(pentafluorophenyl)borane, which was crystallized from dioxanemethylene chloride solution. The water molecule was carried in either through improperly dried solvent or during the process of crystallization. The structure contains one dioxane and one $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule per formula unit. Two dioxane molecules form hydrogen bridges to the water molecule and also bridge between two different adduct moieties, so that an infinite chain of borane-water adducts and dioxane molecules is created.

Comment

The organo-Lewis acid tris(pentafluorophenyl)borane, $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}$, is an important activator towards group IV metallocenes in olefin polymerization (Yang et al., 1994; Janiak, 1998). The borane abstracts an alkide or hydride from the metallocene precatalysts, becomes an anion and generates a highly active cationic metallocenium olefin polymerization catalyst. Structural studies of the anionic hydro- or alkyltris(pentafluorophenyl)borate as part of the cation-anion pairs are known, but the structure of the free borane has not been elucidated. We therefore attempted crystallization of the borane by various means. Crystals were eventually grown from methylene chloride which contained 5% by volume of dioxane.
The single-crystal X-ray structure determination indicated, however, that a water adduct of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}$ had been formed in the course of crystallization. The molecular structure of the title compound, (I), is shown in Fig. 1. The H atoms of the water molecule form hydro-

gen bonds to the dioxane solvent molecules. The dioxane, in turn, bridges between two borane-water adducts, so that a rectangular kinked chain is formed. A molecule of methylene chloride completes the crystal packing. The $\mathrm{B}-\mathrm{O}$ bond length of 1.565 (3) \AA in (I) can be compared to the value of 1.602 (6) \AA in the water adduct of $\mathrm{Ph}_{3} \mathrm{~B}$ (Blake et al., 1988), or to the B-O distance of 1.660 (4) \AA in the tetrahydrofuran adduct of $\mathrm{Ph}_{3} \mathrm{~B}$ (Evans et al., 1996). The shorter bond length in (I) can be ascribed to its increased Lewis acidity, because of the electron-withdrawing fluorophenyl ligands. Even shorter B-O bond lengths are observed in oxy- and hydroxytris(pentafluorophenyl)borates, e.g. 1.460 (6) \AA in $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{ZrOB}_{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \text { (Siedle et al., 1993) and }}$ $1.490(10) \mathrm{A}$ in $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Zr}(\mathrm{Me}) \mathrm{OH}\right]^{+}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{BOH}\right]^{-}$ (Schaefer et al., 1993). Comparative values for the $\mathrm{B}-\mathrm{O}$ distances in oxytriphenylborate complexes
are $1.59(3) \AA$ in $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)_{3} \mathrm{~W}(\mathrm{O})_{2} \mathrm{OBPh}_{3}$ (Schreiber et al., 1990) and 1.547 (7) \AA in (acacen) TiOBPh_{3} [H_{2} acacen $=$ bis(acetylacetone)ethylenediamine; Franceschi et al., 1996]. The B-C bond lengths in (I) are very similar to those found in these other borane and borate complexes. The angles formed between the BO axis and the phenyl rings are 15.1 (2) (C11-C16), 46.4 (2) (C21-C26) and 52.6 (2) ${ }^{\circ}$ (C31-C36).

Fig. I. ORTEP3 (Farrugia, 1997) view of the title compound showing the labelling of the non- H atoms, except the pentafluorophenyl ring oriented to the rear which is not fully labelled because of overlapping graphics [symmetry codes: (i) $1-x, y, \frac{1}{2}-z$; (ii) $\frac{3}{2}$ $\left.-x,-\frac{1}{2}-y, 1-z\right]$. Displacement ellipsoids are shown at the 50% probability level, and the H atoms on the dioxane molecules have been omitted for clarity. One of the dioxane rings is slightly disordered. The numbering of the F atoms is also omitted for clarity: it follows the numbering of the attached C atoms.

Experimental

Synthesis of the title compound was carried out according to the literature method of Massey \& Park (1964). Crystallization was achieved by dissolving (I) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, together with 5% by volume of dioxane, and cooling the solution to $203 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, p.p.m.): $\delta=3.15$ ($s, 8 \mathrm{H}, \mathrm{CH}_{2}$-dioxane), $4.26\left(s, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Note that the chemical shift of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ is concentration dependent; an NMR measurement of a $\mathrm{C}_{6} \mathrm{D}_{6}$ sample with a small amount of methylene chloride confirms this assignment. The water protons are not observed, possibly because of their broad resonance due to quadrupolar coupling, and relaxation effects from the B atom (Harris, 1983). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, p.p.m.): $\delta=53.19\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 66.60$ (dioxane), 137.53 (d, m-PhC), $140.73(d, p-\mathrm{Ph}-\mathrm{C}), 148.30(d, o-\mathrm{Ph}-\mathrm{C})$, coupling constants ${ }^{\prime} J(\mathrm{C}, \mathrm{F})=121-123 \mathrm{~Hz}$; again, the boron-bonded ipso-phenyl C atom is not observed, because of its broad resonance due to quadrupolar coupling, and relaxation effects from the B atom (Harris, 1983). ${ }^{19} \mathrm{~F}$ NMR ($188.3 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, p.p.m.): $\delta=-127.69[d d, o-\mathrm{F}, J(\mathrm{~F}, \mathrm{~F})=23.8$ and 8.5 Hz$],-148.26[t$, $p-\mathrm{F}, J(\mathrm{~F}, \mathrm{~F})=19.6 \mathrm{~Hz}],-155.92[t, m-\mathrm{F}, J(\mathrm{~F}, \mathrm{~F})=21.7 \mathrm{~Hz}]$.

Crystal data
$\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} .-$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=703.04$
Monoclinic
C2/c
$a=17.036$ (6) \AA
$b=16.501$ (4) \AA
$c=19.517$ (5) \AA
$\beta=104.62(2)^{\circ}$
$V=5309$ (3) \AA^{3}
$Z=8$
$D_{x}=1.759 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none 12129 measured reflections 6077 independent reflections 3197 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.124$
$S=1.003$
6077 reflections
431 parameters
H atoms: see below
$R_{\text {int }}=0.069$
$\theta_{\text {max }}=27.47^{\circ}$
$h=-22 \rightarrow 22$
$k=0 \rightarrow 21$
$l=-25 \rightarrow 25$
3 standard reflections every 200 reflections intensity decay: none
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0466 P)^{2}\right.$
+3.0089 P]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=9.9-11.9^{\circ}$
$\mu=0.377 \mathrm{~mm}^{-1}$
$T=160$ (2) K
Irregular platelet
$0.33 \times 0.30 \times 0.21 \mathrm{~mm}$ Colourless

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{B} 1-\mathrm{O} 1$	$1.565(3)$	$\mathrm{O} 1-\mathrm{H} 12$	$0.96(4)$
$\mathrm{B} 1-\mathrm{C} 11$	$1.633(4)$	$\mathrm{C} 11-\mathrm{Cl}$	$1.763(4)$
$\mathrm{B} 1-\mathrm{C} 31$	$1.633(4)$	$\mathrm{C} 2-\mathrm{Cl}$	$1.729(4)$
$\mathrm{B} 1-\mathrm{C} 21$	$1.635(4)$	$\mathrm{O} 5-\mathrm{H} 11$	$1.72(4)$
$\mathrm{O} 1-\mathrm{H} 11$	$0.86(4)$	$\mathrm{O} 4-\mathrm{H} 12$	$1.64(4)$
$\mathrm{O} 1-\mathrm{Bl}-\mathrm{C} 11$	$107.8(2)$	$\mathrm{C} 31-\mathrm{B} 1-\mathrm{C} 21$	$114.2(2)$
$\mathrm{O} 1-\mathrm{B} 1-\mathrm{C} 31$	$105.8(2)$	$\mathrm{B} 1-\mathrm{O} 1-\mathrm{H} 11$	$119(3)$
$\mathrm{C} 11-\mathrm{B} 1-\mathrm{C} 31$	$115.5(2)$	$\mathrm{B} 1-\mathrm{O} 1-\mathrm{H} 12$	$118(2)$
$\mathrm{O} 1-\mathrm{B} 1-\mathrm{C} 21$	$104.4(2)$	$\mathrm{H} 11-\mathrm{O} 1-\mathrm{H} 12$	$114(4)$
$\mathrm{C} 11-\mathrm{B} 1-\mathrm{C} 21$	$108.3(2)$		

H atoms were refined with fixed displacement parameters. The H atoms on the disordered dioxane molecule were calculated.
Data collection: CAD-4/PC (Kretschmar, 1994). Cell refinement: $C A D-4 / P C$. Data reduction: XCAD4 (Harms, 1996). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP3 (Farrugia, 1997).

The authors thank the DFG, the Fonds der Chemischen Industrie and the graduate college in Synthetic, Mechanistic and Reaction Engineering Aspects of Metal Catalysts at the TU Berlin, for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1004). Services for accessing these data are described at the back of the journal.

References

Blake, A. J., Greig, J. A. \& Schröder, M. (1988). J. Chem. Soc. Dalton Trans. pp. 2645-2647.
Evans, W. J., Shreeve, J. L. \& Ziller, J. W. (1996). Acta Crust. C52, 2571-2573.
Farrugia, L. J. (1997). ORTEP3 for Windows. Version 1.0.1 β. University of Glasgow, Scotland.
Franceschi, F., Gallo, E., Solari, E., Floriani, C., Chiesi-Villa, A., Rizzoli, C., Re, N. \& Sgamellotti, A. (1996). Chem. Eur. J. 2, 1466-1476.
Harms, K. (1996). XCAD4. Program for Reduction of CAD-4 Diffractometer Data. University of Marburg, Germany.
Harris, R. K. (1983). Nuclear Magnetic Resonance Spectroscopy, pp. 138-141. London: Pitman.
Janiak, C. (1998). Metallocene Catalysts for Olefin Polymerization, in Metallocenes, edited by A. Togni \& R. L. Halterman. Weinheim: Wiley-VCH. In the press.
Kretschmar, M. (1994). CAD-4/PC. Program for Data Collection and Cell Refinement. Version $1.5 c$. University of Tübingen, Germany.
Massey, A. G. \& Park, A. J. (1964). J. Organomet. Chem. 2, 245-247.
Schaefer, W. P., Quan, R. W. \& Bercaw, J. E. (1993). Acta Cryst. C49, 878-881.
Schreiber, P., Wieghardt, K., Nuber, B. \& Weiss, J. (1990). Z. Naturforsch. Teil B, 45, 619-628.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siedle, A. R., Newmark, R. A.. Lamanna, W. M. \& Huffman, J. C. (1993). Organometallics, 12, 1491-1492.

Yang, X., Stern, C. L. \& Marks. T. J. (1994). J. Aim. Chem. Soc. 116, 10015-10031.

Acta Cryst. (1998). C54, 1724-1727

1,5-Diphenylbicyclo[2.2.1]hept-5-ene-endo-2,endo-3-dicarboxylic Anhydride and 1,5-Diphenylbicyclo[2.2 .1 hhept-5-ene-exo-2,exo-3-dicarboxylic Anhydride

Aarne Pajunen ${ }^{a}$ and Marittta Kokko ${ }^{b}$
${ }^{a}$ Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, Box 55, FIN-00014 University of Helsinki, Finland, and ${ }^{b}$ Laboratory of Organic Chemistry, Department of Chemistry, University of Helsinki, Box 55, FIN-00014 University of Helsinki, Finland. E-mail: aarne.pajunen@helsinki.fi

(Received 6 April 1998; accepted 19 June 1998)

Abstract

The change of the anhydride group with respect to the cyclopentene ring in the endo and exo isomers of $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}$ is reflected in the conformation of the phenyl

